

II MARATON INTERNA DE PROGRAMACION

UNIVERSIDAD KONRAD LORENZ

17 de Noviembre de 2007

PROBLEMAS

Elaborado por: Hector Florez
Basado de www.acis.org.co, www.acm.org

http://www.acis.org.co/
http://www.acm.org/

Problem 1

Interlines
Source file name: interlines.c, interlines.cpp or interlines.java

Input: interlines.in
Output: standar output

We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane
will intersect in one of three ways: [1] no intersection because they are parallel, [2] intersect in a line
because they are on top of one another (i.e. they are the same line), [3] intersect in a point.
In this problem you will use your algebraic knowledge to create a program that determines how and
where two lines intersect.

Input
Your program will repeatedly read in four points that define two lines in the x-y plane and determine
how and where the lines intersect. All numbers required by this problem will be reasonable, say
between -1000 and 1000.

The first line contains an integer N between 1 and 10 describing how many pairs of lines are
represented. The next N lines will each contain eight integers. These integers represent the coordinates
of four points on the plane in the order
x1 y1 x2 y2 x3 y3 x4 y4

Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2)
and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise
with (x3,y3) and (x4,y4).

Output
There should be N+2 lines of output. The first line of output should read
INTERSECTING LINES OUTPUT

There will then be one line of output for each pair of planar lines represented by a line of input,
describing how the lines intersect: none, line, or point. If the intersection is a point then your program
should output the x and y coordinates of the point, correct to two decimal places. The final line of
output should read
END OF OUTPUT

Sample input Sample Output
5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5

INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT

Problem 2

Biggest Prime
Source file name: prime.c, prime.cpp or prime.java

Input: prime.in
Output: standar output

Definition
Prime number is which could be dividing only for 1 and for itself. You must find the biggest prime in a
set of numbers

Input
There will be multiple cases. Each test case will be contained on one line. Each line will contain
multiple integer numbers.

Output
For each test case you should print the biggest prime number. If one case does not contain any prime
number you must print the word No.

Sample input Sample Output
10 7 15 30 25 17 5
10 15 20 25 30
8 10 15 13 7

17
No
13

Problem 3

Speed Limit
Source file name: speed.c, speed.cpp or speed.java

Input: speed.in
Output: standar output

Bill and Ted are taking a road trip. But the odometer in their car is broken, so they don't know how
many miles they have driven. Fortunately, Bill has a working stopwatch, so they can record their speed
and the total time they have driven. Unfortunately, their record keeping strategy is a little odd, so they
need help computing the total distance driven. You are to write a program to do this computation.
For example, if their log shows

Speed in miles per hour Total elapsed time in hours
 20 2
 30 6
 10 7

this means they drove 2 hours at 20 miles per hour, then 6-2=4 hours at 30 miles per hour, then 7-6=1
hour at 10 miles per hour. The distance driven is then (2)(20) + (4)(30) + (1)(10) = 40 + 120 + 10 = 170
miles. Note that the total elapsed time is always since the beginning of the trip, not since the previous
entry in their log.

Input
The input consists of one or more data sets. Each set starts with a line containing an integer n, 1 ≤ n ≤
10, followed by n pairs of values, one pair per line. The first value in a pair, s, is the speed in miles per
hour and the second value, t, is the total elapsed time. Both s and t are integers, 1 ≤ s ≤ 90 and 1 ≤ t ≤
12. The values for t are always in strictly increasing order. A value of -1 for n signals the end of the
input.

Output
 For each input set, print the distance driven, followed by a space, followed by the word "miles".

Sample input Sample Output
3
20 2
30 6
10 7
2
60 1
30 5
4
15 1
25 2
30 3
10 5
-1

170 miles
180 miles
90 miles

Problem 4

Symmetric Order
Source file name: order.c, order.cpp or order.java

Input: order.in
Output: standar output

In your job at Albatross Circus Management (yes, it's run by a bunch of clowns), you have just finished
writing a program whose output is a list of names in nondescending order by length (so that each name
is at least as long as the one preceding it). However, your boss does not like the way the output looks,
and instead wants the output to appear more symmetric, with the shorter strings at the top and bottom
and the longer strings in the middle. His rule is that each pair of names belongs on opposite ends of the
list, and the first name in the pair is always in the top part of the list. In the first example set below, Bo
and Pat are the first pair, Jean and Kevin the second pair, etc.

Input
The input consists of one or more sets of strings, followed by a final line containing only the value 0.
Each set starts with a line containing an integer, n, which is the number of strings in the set, followed
by n strings, one per line, sorted in nondescending order by length. None of the strings contain spaces.
There is at least one and no more than 15 strings per set. Each string is at most 25 characters long.

Output
For each input set print "SET n" on a line, where n starts at 1, followed by the output set as shown in
the sample output.

Sample input Sample Output
7
Bo
Pat
Jean
Kevin
Claude
William
Marybeth
6
Jim
Ben
Zoe
Joey
Frederick
Annabelle
0

SET 1
Bo
Jean
Claude
Marybeth
William
Kevin
Pat
SET 2
Jim
Zoe
Frederick
Annabelle
Joey
Ben

Problem 5

The next round number
Source file name: roundn.c, roundn.cpp or roundn.java

Input: roundn.in
Output: standar output

An N-digit round number is characterized as follows:
• It is an integer with exactly N digits, each of which is between 1 and 9, inclusively.
• The digits form a sequence with each digit telling where the next digit in the sequence occurs. This is done

by giving the number of digits to the right of the digit where the next digit in the sequence occurs. If
necessary, counting wraps around from the rightmost digit back to the leftmost.

• The leftmost digit in the number is the first digit in the sequence, and the sequence must return to this digit
after all digits in the number have been used exactly once.

• No digit will appear more than once in the number.
For example, consider the number 81362. To verify that this is a round number, we use the steps
shown below:
1. Start with the leftmost digit, 8: 8 1 3 6 2
2. Count 8 digits to the right, ending on 6 (note the wraparound): 8 1 3 6 2
3. Count 6 digits to the right, ending on 2: 8 1 3 6 2
4. Count 2 digits to the right, ending on 1. 8 1 3 6 2
5. Count 1 digit to the right, ending on 3. 8 1 3 6 2
6. Count 3 digits to the right, ending on 8, where we began. 8 1 3 6 2
Given a positive integer R, you must determine the smallest round number that is equal to or greater
than R.

Input
You will be provided with one or more input lines, each with a single integer R having between 2 and
7 digits followed immediately by the end of line. The last line of the input will contain only the digit 0
in column 1.

Output
For each input number, determine the smallest round number that is equal to or greater than R. There
will always be such a number for each of the input numbers. Display the resulting number in the format
illustrated below.

Sample input Sample Output
12
123
1234
81111
82222
83333
911111
7654321
0

Case 1: 13
Case 2: 147
Case 3: 1263
Case 4: 81236
Case 5: 83491
Case 6: 83491
Case 7: 913425
Case 8: 8124956

Problem 6

Rounders
 Source file name: rounders.c, rounders.cpp or rounders.java

Input: rounders.in
Output: standar output

For a given number, if greater than ten, round it to the nearest ten, then (if that result is greater than
100) take the result and round it to the nearest hundred, then (if that result is greater than 1000) take
that number and round it to the nearest thousand, and so on ...

Input
Input to this problem will begin with a line containing a single integer n indicating the number of
integers to round. The next n lines each contain a single integer

).999999990(≤≤ xx

Output
For each integer in the input, display the rounded integer on its own line.
Note: Round up on fives.

Sample input Sample Output
9
15
14
4
5
99
12345678
44444445
1445
446

20
10
4
5
100
10000000
50000000
2000
500

	

